Estimating the Fundamental Matrix Using Second-Order Cone Programming
نویسنده
چکیده
Computing the fundamental matrix is the first step of many computer vision applications including camera calibration, image rectification and structure from motion. A new method for the estimation of the fundamental matrix from point correspondences is presented. The minimization of the geometric error is performed based Linfinity norm minimization framework. A single global minimum exists and it may be found by SOCP (Second-Order Cone Programming), which is a standard technique in convex optimization. In a SOCP a linear function is minimized over the intersection of an affine set and the product of second-order (quadratic) cones. Several efficient primal-dual interior-point methods for SOCP have been developed. Experiments on real images show that this method provides a more accurate estimate of the fundamental matrix and superior to previous approaches, and the method is no need for normalization of the image coordinates.
منابع مشابه
Waveform Design using Second Order Cone Programming in Radar Systems
Transmit waveform design is one of the most important problems in active sensing and communication systems. This problem, due to the complexity and non-convexity, has been always the main topic of many papers for the decades. However, still an optimal solution which guarantees a global minimum for this multi-variable optimization problem is not found. In this paper, we propose an attracting met...
متن کاملSolving A Fractional Program with Second Order Cone Constraint
We consider a fractional program with both linear and quadratic equation in numerator and denominator having second order cone (SOC) constraints. With a suitable change of variable, we transform the problem into a second order cone programming (SOCP) problem. For the quadratic fractional case, using a relaxation, the problem is reduced to a semi-definite optimization (SDO) program. The p...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملEstimating vector fields using sparse basis field expansions
We introduce a novel framework for estimating vector fields using sparse basis field expansions (S-FLEX). The notion of basis fields, which are an extension of scalar basis functions, arises naturally in our framework from a rotational invariance requirement. We consider a regression setting as well as inverse problems. All variants discussed lead to second-order cone programming formulations. ...
متن کاملA Distributed Spatio-temporal EEG/MEG Inverse Solver
We propose a novel l(1)l(2)-norm inverse solver for estimating the sources of EEG/MEG signals. Based on the standard l(1)-norm inverse solvers, this sparse distributed inverse solver integrates the l(1)-norm spatial model with a temporal model of the source signals in order to avoid unstable activation patterns and "spiky" reconstructed signals often produced by the currently used sparse solver...
متن کامل